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In 2008, van der Maaten and Geoffrey Hinton introduced t-SNE [1]² as a
method for visualizing high-dimensional data. This visualization approach
essentially implemented what we now call dimensionality reduction. While
t-SNE’s dimensionality reduction performance is now recognized as limited,
it represented a significant advancement at the time, combining capabilities
that were unmatched by existing alternatives³. The novel theoretical frame-
work of t-SNE made profound contributions to data science, establishing
it as a seminal work in the field. A decade later, McInnes, Healy and col-
leagues developed UMAP [2], which claimed to resolve t-SNE’s two primary
weaknesses - computational efficiency and memory requirements - through
a fundamentally different mathematical approach. Within a year, UMAP
gained widespread recognition due to its superior performance in biological
applications4. This article systematically presents UMAP’s core concepts and
mathematical foundations to provide readers with a concise yet comprehen-
sive understanding of this influential technique.

Both t-SNE and UMAP belong to manifold learning, a field that has
achieved considerable theoretical advancements, though early works often
exhibited limited practical effectiveness. The fundamental premise of mani-
fold learning is that certain high-dimensional data are inherently embedded
within a lower-dimensional manifold structure in the high-dimensional
space. Consequently, dimensionality reduction can significantly mitigate
the frequent “curse of dimensionality” problem encountered in high-dimen-
sional data spaces. Thus, even if real-world data does not fully conform to the
assumption of an underlying low-dimensional manifold structure, dimen-
sionality reduction methods can still preserve as much original information
as possible while reducing data dimensions.

¹Posted on November 9, 2024.
²The name stands for t-Distributed Stochastic Neighbor Embedding.
³Popular linear methods included PCA and LDA, while nonlinear approaches

consisted mainly of Isomap and LLE.
4UMAP has become the dominant method in single-cell genomics and sees extensive

use in statistical genetics.
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The proposed t-SNE algorithm achieved superior visualization quality
compared to contemporary techniques including Sammon mapping, Isomap,
and Locally Linear Embedding (LLE) across most benchmark datasets.
However, its performance in general dimensionality reduction tasks proved
inadequate, often requiring extensive data preprocessing. McInnes and
Healy’s critical analysis suggested t-SNE’s limitations stemmed from prob-
lematic theoretical assumptions, particularly in its probability formulations
that failed to capture true data relationships. This is exemplified in the key
probability definition 𝑝𝑖𝑗, where the Gaussian-based pairwise distance mod-
eling exhibits fundamental constraints.

𝑝𝑖𝑗 =
𝑝𝑖|𝑗 + 𝑝𝑗|𝑖

2𝑁 , 𝑝𝑗|𝑖 =
exp(

−‖𝑥𝑖−𝑥𝑗‖2

2𝜎2
𝑖

)

∑
𝑘≠𝑖

exp( −‖𝑥𝑖−𝑥𝑘‖2

2𝜎2
𝑖

)

Consequently, McInnes et al. emphasized that their employment of mathe-
matical tools like fuzzy logic could better address the complexities arising
from assumptions that more accurately reflect real-world data characteristics.
They further maintained that, in the long term, decisions grounded in rigor-
ous theoretical foundations would enable the development of more scalable
and generalizable algorithms. The UMAP algorithm operates under three
fundamental assumptions about the data:

1. There exists a manifold on which the data is uniformly distributed.
2. The underlying manifold is locally connected.
3. The primary objective is to preserve the topological structure of this

manifold.

In subsequent sections, we will examine why these three points must serve
as axiomatic foundations for the entire algorithm. First, we introduce several
definitions that will be utilized in later discussions.

Definition 1.1. A simplex is the n-dimensional generalization of geometric
concepts such as triangles and tetrahedrons, where 𝑛 ∈ ℕ. The n-dimensional
simplex is defined as the topological space Δ𝑛, which forms a specific sub-
space of ℝ𝑛+1:

Δ
𝑛 = {(𝑥0, ⋯, 𝑥𝑛) ∈ ℝ𝑛+1 || 𝑥0, ⋯, 𝑥𝑛 ≥ 0, ∑0≤𝑖≤𝑛 𝑥𝑖 = 1}
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equipped with the subspace topology from ℝ𝑛+1. This particular set is
referred to as the standard n-simplex. Simplices serve as fundamental build-
ing blocks for constructing more complex geometric structures. In topology,
simplices can be assembled into simplicial complexes, while in combinatorics
they form simplicial sets.

Definition 1.2. The simplex category Δ is defined as follows:
• Its objects are all sets of the form [𝑛] = {0, ⋯, 𝑛} where 𝑛 ≥ 0.
• The morphism set Δ([𝑚], [𝑛]) consists of all order-preserving maps

from [𝑚] to [𝑛] (i.e., maps that preserve the ≤ relation).

The category Δ can also be viewed as the category of standard simplices with
ordered vertices, where morphisms are linear maps between simplices that
map vertices to vertices while preserving their ordering.

Definition 1.3. A simplicial set is a functor from Δop to 𝖲𝖾𝗍, that is, a
contravariant functor from the simplex category Δ to 𝖲𝖾𝗍, or equivalently, a
presheaf on Δ. The category of simplicial sets is denoted 𝗌𝖲𝖾𝗍 = 𝖥𝗎𝗇(Δop, 𝖲𝖾𝗍).

Definition 1.4. For the simplex category Δ, let Δ≤𝑛 denote its full subcategory
on objects [0], [1], ⋯, [𝑛]. The inclusion map Δ|≤𝑛 ↪ Δ induces a truncation
functor 𝗍𝗋𝑛 : 𝗌𝖲𝖾𝗍 = [Δop, 𝖲𝖾𝗍] → [Δop

≤𝑛, 𝖲𝖾𝗍] = 𝗌𝖲𝖾𝗍≤𝑛 which restricts a simpli-
cial set to degrees ≤ n. This functor has a fully faithful left adjoint, which
can be given by right Kan extension: 𝗌𝗄𝑛 : 𝗌𝖲𝖾𝗍≤𝑛 → 𝗌𝖲𝖾𝗍 This is called the n-
skeleton.

Ideally, the authors of UMAP aim for the low-dimensional representation to
possess a fuzzy topological structure as similar as possible to the original.
This objective raises two key issues: first, how to determine the fuzzy topo-
logical structure of the low-dimensional representation; and second, how to
identify an optimal fuzzy topological structure.

Definition 1.5. Let 𝑋 = {𝑋1, ⋯, 𝑋𝑛} be a dataset in ℝ𝑛, and {(𝑋, 𝑑𝑖)}F1≤𝑖≤𝑛 be a
family of extended pseudometric spaces with common carrier set 𝑋 , where

𝑑𝑖(𝑋𝑗 , 𝑋𝑘) = {𝑑M(𝑋𝑗 , 𝑋𝑘) − 𝜌 if 𝑖 = 𝑗 or 𝑗 = 𝑘
∞ otherwise

Here, 𝜌 represents the distance to the nearest neighbor of 𝑋𝑖, and 𝑑M denotes
the geodesic distance on the manifold M. Both distances can be either
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precomputed or approximated. The fuzzy topological representation of 𝑋  is
defined as

⋃

𝑛

𝑖=1

𝖥𝗂𝗇𝖲𝗂𝗇𝗀((𝑋, 𝑑𝑖))

This construction yields a fuzzy simplicial set that serves as a global
representation of the manifold, formed by piecing together numerous local
representations. Given that such topological structures can be constructed
either from known manifolds or by learning the metric structure of the man-
ifold, dimensionality reduction can be achieved by finding a low-dimensional
representation whose topological structure closely matches that of the source
data. The remaining challenge is to determine how to find such an optimal
low-dimensional representation.

UMAP follows a workflow similar to t-SNE as its successor, both employ-
ing graph layout algorithms to arrange data in low-dimensional space. The
process involves first constructing a high-dimensional graph representation
of the data, then optimizing a low-dimensional graph to maximize structural
similarity. Although the original UMAP paper presents the high-dimensional
graph construction and proves its properties using sophisticated mathemat-
ical tools with specialized prerequisites, the underlying intuition is quite
straightforward. For instance, the fuzzy simplicial complex defined above
can be intuitively understood5 as a representation of a weighted graph.

Simplicial complexes provide a reasonable approach to initially captur-
ing the fundamental topology of datasets. Importantly, most of the work is
actually accomplished by 0-simplices and 1-simplices, which are computa-
tionally more tractable - in the sense of nodes and edges, they simply form a
graph. This observation leads to the Vietoris-Rips complex, which is similar to
the Čech complex but completely determined by 0-simplices and 1-simplices.
The Vietoris-Rips complex is computationally more feasible to use, particu-
larly for large datasets, and serves as one of the primary tools in topological
data analysis.

The method described above explains why neighborhood graph-based
approaches should capture manifold structures during dimensionality re-
duction. However, when attempting to implement this theory in practice, the

5Naturally, this intuition primarily holds for 0-simplices and 1-simplices.
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first obvious difficulty encountered is selecting an appropriate radius for the
balls that form the open cover. If the chosen radius is too small, the resulting
simplicial complex will fragment into many disconnected components. If the
radius is too large, the simplicial complex will collapse into a few very high-
dimensional simplices and their faces, thereby failing to capture the manifold
structure.

This dilemma arises partly because the Nerve Theorem provides theoret-
ical justification for this topology-capturing process. Specifically, the theorem
shows that the simplicial complex will be homotopy equivalent to the union
of the cover. When working with finite data, for certain radii, the cover may
not encompass the entire underlying manifold we assume for our data - this is
precisely what happens when radius 𝑟 is too small, leading to insufficient cov-
erage and disconnected components. Similarly, when points are too densely
packed, the resulting cover will include excessive data, producing higher
dimensionality than desired. However, if the data is uniformly distributed
on the manifold, selecting an appropriate radius becomes straightforward,
as the average distance between points will be properly characterized.
Moreover, uniform distribution ensures that the cover will span the entire
manifold without gaps or unnecessary disconnected components, while also
avoiding those problematic clustering effects that lead to undesirably high-
dimensional simplifications.

Lemma 1.6. Let (M, 𝑔) be a Riemannian manifold in ℝ𝑛, and 𝑝 ∈ 𝑀 a point. If
𝑔 remains locally constant in an open neighborhood 𝑈 containing 𝑝, making
𝑔 a constant diagonal matrix in the ambient coordinates, then within a ball
𝐵 ⊆ 𝑈 centered at 𝑝 with volume 𝜋

𝑛
2 Γ( 𝑛

2
+ 1)

−1
, for any 𝑞 ∈ 𝐵, the geodesic

distance from 𝑝 to 𝑞 is 1

𝑟
𝑑ℝ𝑛(𝑝, 𝑞), where 𝑟 is the radius of the ball in ambient

space, and 𝑑𝑛
ℝ is the existing metric in ambient space.

Assuming the set of all possible 1-simplices is 𝐸6, where 𝑤ℎ(𝑒) is the weight
of 1-simplex 𝑒 in high dimensions and 𝑤𝑙(𝑒) is its weight in low dimensions,
the cross-entropy is:

∑
𝑒∈𝐸

 𝑤ℎ(𝑒) log(
𝑤ℎ(𝑒)
𝑤𝑙(𝑒) ) + (1 − 𝑤ℎ(𝑒)) log(

1 − 𝑤ℎ(𝑒)
1 − 𝑤𝑙(𝑒) )

6Do not take this literally - the definition of simplicial sets was provided earlier.
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This weighted sum actually has clear physical significance. Returning to the
graph representation of data, minimizing cross-entropy becomes a force-
directed graph layout algorithm. For each term in the sum: 𝑤ℎ(𝑒) log( 𝑤ℎ(𝑒)

𝑤𝑙(𝑒)
)

provides attraction between the endpoints of edge 𝑒 when there’s large
weight in high dimensions, because this term is minimized when 𝑤𝑙(𝑒) is
maximized (occurring when points are as close as possible). Conversely,
(1 − 𝑤ℎ(𝑒)) log( 1−𝑤ℎ(𝑒)

1−𝑤𝑙(𝑒)
) provides repulsion between endpoints when 𝑤ℎ(𝑒) is

small, as minimizing this term requires minimizing 𝑤𝑙(𝑒).

This constitutes a non-convex optimization problem, where convergence
to local minima is ensured by slowly reducing attraction and repulsion forces,
similar to the approach used in simulated annealing. In UMAP, the attractive
force between vertices 𝑖 and 𝑗 with coordinates 𝑦𝑖 and 𝑦𝑗  is determined by:

−2𝑎𝑏‖𝑦𝑖 − 𝑦𝑗‖2(𝑏−1)
2

1 + ‖𝑦𝑖 − 𝑦𝑗‖2
2

⋅ 𝑤((𝑥𝑖, 𝑥𝑗))(𝑦𝑖 − 𝑦𝑗)

where 𝑎 and 𝑏 are hyperparameters. Due to computational constraints, repul-
sion is implemented through sampling. Thus, whenever attraction is applied
to an edge, one of its vertices is repelled by sampled other vertices. The
repulsive force is given by:

2𝑏
(𝜀 + ‖𝑦𝑖 − 𝑦𝑗‖2

2)(1 + 𝑎‖𝑦𝑖 − 𝑦𝑗‖2𝑏
2 )

⋅ (1 − 𝑤((𝑥𝑖, 𝑥𝑗)))(𝑦𝑖 − 𝑦𝑗)

Here 𝜀 is chosen as a small number to prevent division by zero when 𝑦𝑖 = 𝑦𝑗 .

Generally, the cross entropy 𝐶 between two fuzzy sets (𝐴, 𝜇), (𝐴, 𝜈) can
be defined analogously as:

𝐶((𝐴, 𝜇), (𝐴, 𝜈)) ≝ ∑
𝑎∈𝐴

 𝜇(𝑎) log(
𝜇(𝑎)
𝜈(𝑎) ) + (1 − 𝜇(𝑎)) log(

1 − 𝜇(𝑎)
1 − 𝜈(𝑎) )

This serves as UMAP’s cost function. The key advantage is that it enables
direct optimization of embeddings by minimizing fuzzy set cross entropy.
Specifically, note that:
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𝐶((𝐴, 𝜇), (𝐴, 𝜈)) = ∑
𝑎∈𝐴

 𝜇(𝑎) log(
𝜇(𝑎)
𝜈(𝑎) ) + (1 − 𝜇(𝑎)) log(

1 − 𝜇(𝑎)
1 − 𝜈(𝑎) )

= ∑
𝑎∈𝐴

 (𝜇(𝑎) log(𝜇(𝑎)) + (1 − 𝜇(𝑎)) log(1 − 𝜇(𝑎)))

− ∑
𝑎∈𝐴

(𝜇(𝑎) log(𝜈(𝑎)) + (1 − 𝜇(𝑎)) log(1 − 𝜈(𝑎)))

Let’s denote each term of the first sum as 𝐶𝜇(𝑎), which depends only on the
fixed 𝜇 values during optimization. Thus minimizing cross entropy depends
solely on the second sum. We only need to minimize:

− ∑
𝑎∈𝐴

(𝜇(𝑎) log(𝜈(𝑎)) + (1 − 𝜇(𝑎)) log(1 − 𝜈(𝑎)))

Denoted as 𝑆, basic estimates show: 𝑆 ≥ ∑𝑎∈𝐴 𝜇(𝑎) + 𝜈(𝑎) − 2𝜇(𝑎)𝜈(𝑎)

Similar to t-SNE7, we can optimize the embedding 𝑌  by minimizing 𝐶
using stochastic gradient descent. This requires introducing a differentiable
fuzzy singular set functor. UMAP constructs topological representations by
approximating the manifold and piecing together local fuzzy simplicial
set representations, then optimizes the low-dimensional layout to minimize
error between topological representations.

Focusing on 1-skeletons of fuzzy simplicial sets, let 𝑋𝑖 be the fuzzy set of
𝑖-simplices of 𝑋 , with 𝜆𝑖 as weights. The cost function 𝐶ℓ can be defined as:

𝐶ℓ(𝑋, 𝑌) ≝ ∑
1≤𝑖≤ℓ

𝜆𝑖𝐶ℓ(𝑋𝑖, 𝑌 𝑖)

For implementation, we sample 1-simplices with probability 𝜇(𝑎) and update
according to 𝜈(𝑎). Negative sampling handles the (1 − 𝜇(𝑎)) log(1 − 𝜈(𝑎))
terms by randomly sampling potential 1-simplices as negative examples. This
yields:

𝑃(𝑥𝑖) =
∑{𝑎∈𝐴 : 𝑑0(𝑎)=𝑥𝑖} 1 − 𝜇(𝑎)

∑{𝑏∈𝐴 : 𝑑0(𝑏)≠𝑥𝑗} 1 − 𝜇(𝑏)

For large datasets, uniform distribution provides reasonable approximation
for negative sampling. Thus we can apply gradient descent optimization once
we find a differentiable approximation 𝜈(𝑎) for a given 1-simplex 𝑎.

7The difference being t-SNE uses KL divergence as cost function.
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