
A Correspondence between Stack Permutations
and Binary Trees via Hille Encoding

Kokic Liu

Abstract — This paper systematically investigates the bi�
jective or isomorphic construction problem between stack
permutations and binary tree, with a focus on the equivalence
and differences between Hille codes and stack codes. Through
constructive proofs, we correct algorithmic errors in the orig�
inal literature and rigorously demonstrate the equivalence
between stack codes and Hille codes in the bijective sense.
Furthermore, we analyze the intersection size of Hille codes
and stack codes, revealing that when the number of binary tree
nodes 𝑛 > 8, the overlapping portion constitutes less than half
of the total cases. Additionally, we provide precise upper and
lower bounds for the effective length of Hille codes, proving
that their maximum value is 3𝑛 − 4 and showing that the
binary tree structure achieving this bound is unique. These
results offer new tools and perspectives for the study of stacks
and binary trees, while also laying a foundation for subsequent
algorithm design and combinatorial optimization.

Index Terms — binary trees, stack permutations, encoding,
correspondence

1. Introduction

The isomorphic relationship between binary trees
and stack permutations is a classical problem in combi�
natorics and computer science, centered on constructing
a bijection between the two structures. Knott defined a
rank for each binary tree [1] and provided an efficient
algorithm for computing the rank sum and its inverse.
Inspired by this, Hille proposed Hille encoding [2],
aiming to establish a correspondence between binary
trees and stack permutations using binary sequences.
However, the original encoding algorithm in Hille’s
work contained flaws, resulting in incorrect computation
of Hille codes for certain binary trees. This observation
prompted us to re�examine the specifics of bijective
construction.

2. Constructing the Bijection

A stack permutation is also called a stack shuffle.
Given a non�empty stack 𝐴 and empty stacks 𝐵 and 𝑆,
only the following operations are permitted at each step:
(𝑖) pop 𝐴 and push 𝑆. (𝑖𝑖) pop 𝑆 and push 𝐵. It’s easy
to see that eventually all elements of 𝐴 must enter 𝐵.
Such 𝐵 is called a stack permutation of 𝐴.

All stack permutations of 𝐴 are exactly all possible
pop sequences of 𝐴. It’s well known that an 𝑛�element
stack has 1

𝑛+1(2𝑛
𝑛 ) possible pop scenarios. On the other

hand, 𝑛 nodes can form 1
𝑛+1(2𝑛

𝑛 ) binary trees, both
being Catalan numbers. This shows that the two sets are
isomorphic as collections, and the natural and important

question is: how to implement this isomorphism? That
is, to explicitly write out this bijection. The work in this
direction first came from R. F. Hille [2].

Since our discussion doesn’t involve specific ele�
ments, without loss of generality, we can fix the push
order of stack permutations as 123⋯𝑛. These numbers
are also the labels of binary tree nodes. On the other
hand, what affects the pop sequence are only the push
and pop operations, while constructing binary trees
appears to allow one more type of operation at first
glance. We encode stack pushes and pops as 1 and 0 re�
spectively, and call the corresponding binary sequence a
stack code. Correspondingly, the construction of binary
trees is characterized by Hille encoding [2].

2.1. Hille Encoding
The following three rules describe the conversion

process from Hille encoding to binary trees. It can
be easily verified that given any binary tree, its Hille
encoding can be obtained through these three rules. (𝑖)
1 represents adding a left subtree to the current tree
node. For example, 111 represents the tree (⋅ (⋅ (⋅))).
(𝑖𝑖) 01 represents adding a right subtree to the current
tree node. For example, 10101 represents the tree (⋅ _ (⋅
_ (⋅))). (𝑖𝑖𝑖) For the 𝑘 0s before 01, these 0s are used
to indicate backtracking the current tree node to its 𝑘�
th ancestor. For example, 11001 represents the tree (⋅ (⋅)
(⋅)). Note that each tree node has a unique parent node,
therefore the backtracking operation is well�defined,
where a backtrack means changing the current node to
its parent.

Accordingly, we can define parsing rules for Hille
encoding based on this, which are used to convert such
a valid binary sequence into a series of operations for
constructing a binary tree. We use a BNF�like grammar
to define this parser.

<lchild> := "1"
<rchild> := "01"
<up> := "0"
<parser> := (<lchild> | <rchild> | <up>)*

2.2. 𝑛 = 3
Here are all 5 possible cases of three�node binary

trees to demonstrate how their binary sequences corre�
spond to stack permutations. The binary sequences are
padded with trailing zeros based on the stack being
emptied.



→ 111000 → 321

→ 110100 → 231

→ 101100 → 132

→ 101010 → 123

→ 110010 → 213
Fig. 1: all three node trees

The reverse of this process is non�trivial. If we only
consider the case of 𝑛 = 3, as shown in the figure
above, we can observe that these stack permutations
precisely correspond to the in�order traversal sequences
of binary trees when nodes are numbered according to
their insertion order. That is, nodes are added step�by�
step following the Hille encoding. For the binary tree
1101000100, numbering the nodes in insertion order and
performing an in�order traversal yields 2314.

Next, we will explain the non�trivial aspects of this
phenomenon and the specific conditions under which
this coincidence occurs, as detailed in Proposition 3.1
and its construction process.

3. Correction to the Original Text

First, an observation regarding the original liter�
ature: The algorithm proposed in Hille’s paper [2]
actually contains an error. We have rewritten it in Lean4
language, namely,

def encode : Tree → String
  | .node l r :> "1" :+ encode l :+ encode r
  | _ :> "0"

Now, denote this encode function as 𝑚. A simple exam�
ple reveals that converting a binary tree 𝐵 into its Hille
encoding ℎ(𝐵) is not equivalent to a straightforward in�
order traversal 𝑚(𝐵).

𝑚( ) = "1"  :+  𝑚( ) :+  𝑚( )

= "1"  :+  "1"  :+  "0"  :+  2 ⋅ 𝑚( )

= "110"  :+  2 ⋅ "100"

= "110100100"

It can be verified that starting from the encoding
110100100, the original binary tree structure cannot be
directly recovered. The correct Hille encoding should
be 1101000100. However, if we interpret the sequence
110100100 as stack push/pop operations (i.e., as a stack
encoding), it correctly yields the stack permutation 2314.
This implies that for binary trees with node count 𝑛 >
3, there exist cases where a tree’s stack encoding differs
from its Hille encoding.

Recalling the bijective relationship between binary
trees and stack permutations, this suggests there must
exist a constructive procedure allowing conversion
between the two. Below, we will explicitly present
this result (see Proposition 3.1). Subsequently, through
Proposition 3.2, we explain why in�order traversal fre�
quently yields correct Hille encodings for small values
of 𝑛.

Proposition 3.1. Stack Encoding and Hille Encoding are
equivalent.

proof. First, it is straightforward to verify that in�order
traversal always provides a mapping from a binary
tree 𝑏 ∈ 𝐵 to a stack permutation 𝑠 ∈ 𝑆. Conversely, for
every stack permutation 𝑠 ∈ 𝑆, a unique binary sequence
i.e. the stack encoding 𝑐 ∈ 𝐶—can be derived. Ignoring
trailing 0s, when the stack encoding 𝑐 matches the
Hille encoding ℎ ∈ 𝐻 of the binary tree 𝑏, applying in�
order traversal directly to 𝐵 will yield the correct Hille
encoding.

𝐵 𝑆

𝐻 𝐶

Let 𝐵 → 𝐻 be denoted as 𝑓 . According to Section 2.1, 𝑓
is a bijection. Based on the properties of binary trees,
𝑔 : 𝐵 → 𝑆 represents in�order traversal, where the push
order of stack permutations is fixed as 123⋯𝑛, thereby
determining the level�order traversal of 𝐵. Thus, 𝑔 is also
a bijection. Now consider ℎ : 𝑆 → 𝐶, which is clearly a
bijection as well. Finally, we can recover the information
of 𝑐 ∈ 𝐶 from ℎ ∈ 𝐻 by treating the ℎ sequence as stack
encoding and ignoring pops from an empty stack, which
implies that 𝐻 → 𝐶 is a surjection. Then, using 𝐶 → 𝑆 →
𝐵 → 𝐻, we obtain 𝐻 ≅ 𝐶. □



The encoding algorithm used in Hille’s original work
is precisely ℎ ∘ 𝑔 : 𝐵 → 𝐶, while the intended correct
implementation should be 𝑓 , hence the two differ by an
isomorphism in their results.

Proposition 3.2. Let the set of all Hille encodings for
𝑛�node binary trees be denoted as 𝐻𝑛, and the set of
all stack encodings for 𝑛�node binary trees as 𝐶𝑛. For
the size 𝑎𝑛 ≝ |𝐻𝑛 ∩ 𝐶𝑛|, we have the following charac�
terization:

𝑎𝑛 =  ∑
𝑛−1

𝑘=0
∑
𝑛−𝑘

𝑗=0

1
𝑗 + 1(

𝑛 − 𝑘 − 𝑗
𝑗 )(

𝑘
𝑗 )(

𝑘 + 𝑗 + 2
𝑗 )

Let 𝑁 = 𝑛 + 1. The proof of this equality can be obtained
by analyzing a Dyck path of semi�length 𝑁 that does
not contain the subsequence UUDD. This also corresponds
to the number of lattice paths from (0, 0) to (𝑁, 𝑁)
that do not cross the diagonal and allow step sizes
(1, 𝑘), (𝑘, 1), 𝑘 ⩾ 1. More simply, it is the number of skew
Motzkin paths of length 𝑁 [3]. This also means that we
can use 𝑎𝑛 inversely to provide a new representation for
these special combinatorial sequences.

proof. We only provide an outline of the proof, trans�
forming it into a problem that has already been verified
in combinatorics [3]. First, it needs to be proven that
𝑎𝑛 satisfies the recursive relation 𝑎𝑛+1 = ∑𝑛

𝑘=2 𝑎𝑘𝑎𝑛−𝑘,
which can be achieved through induction. Then, based
on a few initial values (𝑎𝑖)=0≤𝑖≤2 and the recursive rela�
tion for Proposition 3.2, the expression is inductioned
again. The specific calculation process is not suitable to
be unfolded here. □

Corollary 3.3. Let the Catalan number be 𝑐𝑛, which
is also the size of 𝐻𝑛 or 𝐶𝑛. Naturally, we may ask
about the relationship between the proportion |𝐻𝑛 ∩ 𝐶𝑛|
among all 𝑛�node binary trees and 𝑛. Based on Proposi�
tion 3.2 and the asymptotic estimate of Catalan numbers
[4] 𝑐𝑛 ∼ 4𝑛

√𝜋𝑛3/2 , we know that lim𝑛→∞
𝑎𝑛
𝑐𝑛

= 0. In fact, when
the number of nodes 𝑛 in binary trees exceeds 8, the
overlapping portion between 𝐻𝑛 and 𝐶𝑛 will be less than
half of the total.

4. Bounds on Effective Length

An interesting question to explore is, given an 𝑛
�node binary tree, to determine the range of effective
lengths ℓ(𝐻𝑛) for its Hille encoding 𝐻𝑛. Here “effective”
naturally refers to removing trailing consecutive zeros
0. We will provide a precise answer to this question.

Proposition 4.1. (Bounds on Effective Length) For any
𝑛�node binary tree, the effective length of its Hille
encoding satisfies the following inequality:

𝑛 ⩽  ℓ𝑛 ⩽  max(0, 2𝑛 − 1, 3𝑛 − 4) (1)

The verification of the lower bound 𝑛 is straightforward,
constructing an 𝑛�node binary tree requires at least 𝑛
1s. For our discussion here, we only need to verify
that when 𝑛 ⩾ 3, the maximum effective length of Hille
encoding is 3𝑛 − 4.

proof. Note that to maximize the effective length, the
corresponding binary tree should have as many right
nodes and backtracking operations as possible. Satisfy�
ing both requirements implies: (𝑖) there must be at least
one left node besides the root. Otherwise, the binary
tree would only take forms like 1010101⋯, with length
2𝑛 − 1; (𝑖𝑖) the tree must have at least one node to the
right of the root. Otherwise the length contribution from
backtracking wouldn’t reach maximum. As illustrated
below:

Fig. 2: 11001

From this starting point, we add all remaining 𝑛 − 3
nodes to the right of the tree’s only left node. That is:

𝑀 =

⋱
Fig. 3: 110101::.00001

Now we just need to calculate ℓ(𝑀) to obtain the
maximum value of ℓ𝑛. Let’s directly write out ℎ(𝑀):

ℎ(𝑀) = "110101::.00001"
= "11"  :+  (𝑛 − 3) ⋅ "01"

 :+  (𝑛 − 2) ⋅ "0"  :+  "01"
(2)

We can immediately see that ℓ(𝑀) = 2 + 2(𝑛 − 3) + (𝑛 −
2) + 2 = 3𝑛 − 4. □

Conversely, starting from tree 𝑀, we can verify that any
operation maintaining the same number of nodes won’t
increase its Hille encoding’s effective length. Further�
more, we can assert that any such operation will strictly
decrease the effective length. In other words, the binary
tree structure 𝐵 that achieves ℓ(𝐵) = 3𝑛 − 4 is unique,
namely 𝑀.

It is evident that from this proof process, we can
discover that by assigning appropriate codes to binary
trees, the verification of related properties can be trans�
formed into pure equality and inequality issues. This
implies that we can apply these techniques to a wider
range of similar problems. It demonstrates that the
methods proposed in this paper have significant versa�
tility and potential for application.



5. Summary and Outlook

This paper investigates the construction problem
of stack permutation�binary tree isomorphism. By cor�
recting the Hille encoding algorithm, quantitatively
analyzing encoding differences, and determining effec�
tive length bounds, we have strengthened the theoretical
foundation in this field. Specifically, we proved the
equivalence between stack encoding and Hille encoding
Proposition 3.1, and showed that encoding differences
begin to emerge when 𝑛 > 3. A phenomenon further
explained through asymptotic analysis of intersection
size Corollary 3.3. Additionally, determining the range
of effective Hille encoding lengths Proposition 4.1
provides concrete information for evaluating related
encodings. Please note that the evaluation here does
not merely imply the shortest coding in the sense
of information theory, but also considers requirements
such as maintaining structural correspondence between
two structures after data updates. For the binary tree
coding problem in pure information theory, Cover &
Thomas [5] have provided answers. Munro & Raman
[6] proposed a near�optimal coding for binary trees,
which uses only 2𝑛 + 𝑜(𝑛) bits, close to the lower bound
2𝑛 − 𝑂(log 𝑛) given by information theory. As potential
future research, exploring how to use Hille encoding or
stack permutation�binary tree isomorphism to provide
alternative interpretations of the Blass�Lawvere theorem
[7] i.e., “seven trees in one” presents a promising direc�
tion.

References

[1] KNOTT G D. A numbering system for binary trees[J]. Communi�
cations of the ACM, 1977, 20(2): 113�115.

[2] HILLE R F. Stack permutations and an order relation for binary
trees[J]. Working Paper 82�8, 1982.

[3] FLAJOLET P, SEDGEWICK R. Analytic combinatorics[M]. cam�
bridge University press, 2009.

[4] KNUTH D E. The art of computer programming, volume 4A:
combinatorial algorithms, part 1[M]. Pearson Education India,
2011.

[5] DEMBO A, COVER T M, THOMAS J A. Information theoretic
inequalities[J]. IEEE Transactions on Information theory, 1991,
37(6): 1501�1518.

[6] MUNRO J I, RAMAN V. Succinct representation of balanced
parentheses and static trees[J]. SIAM Journal on Computing, 2001,
31(3): 762�776.

[7] BLASS A. Seven trees in one[J]. Journal of Pure and Applied
Algebra, 1995, 103(1): 1�21.


	Introduction
	Constructing the Bijection
	Hille Encoding
	n=3

	Correction to the Original Text
	Bounds on Effective Length
	Summary and Outlook
	References

